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ABSTRACT

The bounded invertibility (as a linear map on £, say) of a bounded,

strictly m-banded biinfinite matrix A is shown to be equivalent to a

dichotomy or splitting of its kernel IL (as a map on R Z ) into I+ and

with '+ containing those which decay exponentially at +-, and 1-

those which decay exponentially at - , together with a certain uniformity

(with respect to the sequence index) of this direct sum decomposition. The

approximability of the solution of the biinfinite system Ax = b by solutions

of finite sections of this system is characterized in terms of linear
* i+ *

independence, uniform as I - -* of it over I I-, with I an

integer interval of length dim *, * =
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SIGNIFICANCE AND EXPLANATION

'pline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably nonuniform. At the same time, standard spline

approximation schemes (such as least-squares approximation by splines) are so

far only known to be bounded as long as the breakpoint sequence is almost

uniform. Any such bound is obtained (explicitly or implicitly) in terms of a

bound on the inverse of certain matrices which are banded. Any attempt at

establishing bounds for more general breakpoint sequences must therefore come

to grips with the inverses of these band matrices. The hope is that Demko's

discovery of the exponential decay of band matrix inverses will lead

eventiaally to those desired bounds.

in the present report, this exponential decay is related to the

exponential decay of solutions of the homogeneous problem Ax = 0. In

particular, proofs are provided for the statements made in the earlier report

MRC TSR 2049 entitled "What is the main diagonal of a biinfite band matrix?"

ACESSION for

NTIS White Section
DOC Buff Section 0
UWNNOUNCED 0
JUSTIFICATION

DBUTION/AYAILABIUTY COES
0t. AqkAIL. ai/or SP'ECKD

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

2&<-



DICHOTOMIES FOR BAND MATRICES

Carl de Boor

Dedicated to Garrett Birkhoff on the occasion of his 70th birthday

1. Introduction. In retrospect, the exponential decay of the Lagrange splines for

cubic spline interpolation at knots proved in Birkhoff and de Boor [1] appears as the first

instance in spline theory of exponential decay of band matrix inverses. Since then, the

exponential decay of band matrix inverses has been used successfully by I.J.Schoenberg and

others (see, e.g., [10]) in the analysis of cardinal splines in which the band matrices in

question are Toeplitz matrices, hence well known to have exponentially decaying inverses.

In adapting the proof of Douglas, Dupont and Wahlbin [6] for the boundedness of least-

squares approximation by splines on a quasi-uniform mesh to more general spline

approximation schemes, S. Demko [5] discovered that, in a nontrivial way, all band matrix

inverses decay exponentially away from the main diagonal. At that time, I had used the idea

behind the Douglas, Dupont and Wahlbin argument to carry some of [1] over to odd-degree

spline interpolation at knots, but was pleased to find (in [2]) how nicely the idea behinI

Demko's argument simplified the proofs.

As a kind of afterthought, I proved in [2] that any nontrivial solution of the

biinfinite homogeneous linear system Ax = 0 must grow exponentially in at least one

direction in case A is a band matrix, bounded and boundedly invertible (on Z , say).

With that in mind, though, further considerations of odd-degree spline interpolation at

knots led to the characterization of bounded invertibility (as a map on Z ) of a band

matrix in terms of a dichotomy or splitting of its kernel (as a map on R
Z 

). These results

were stated in [3] and are restated in greater detail and proved here.

I have to confess now that I became only recently familiar with the well establishei

theory of ordinary and exponential dichotomies for ordinary linear differential operatorp

in Banach space, particularly through Coppel's eminently readable book [4]. I have trio! to

Sponsored by the United States Army under Contract Nob. DAAG29-75-C-0024.



deduce the results presented here from those in Cbppel's hook by reinterpreting hand

matrices as difference operators and then qoing from the discrete to the continuous. Put it

seemed, in the end, more satisfactory and "sachqerecht" to argue directly in terms of band

matrices. Perhaps someone else will he more successful in this translation effort. In any

event, Clopel's book could be an inspiration to those studyinq hiinfinite hand matrices.

Here is an outline of the paper. In Section 2, it is proved that, for a strictly m-

banded matrix A, there exists an 2 -columned matrix A(-) for which AA
(- ) 

= 1 = A(-)A

iff the kernel, of A (as a mar) on RZ ) is the direct sum of 1 and a
A' A A

with ' consisting of those elements of %T which are hounded at *- . In Section 3,

the hounded invertihility (on I ) of a hounded strictly m-handed matrix A is shown top

he equivalent to having the elements of A decay exponentially at *- together with a

certain uniformity condition. Finally, in Section 4, the approximahilitv of the solution of

the hiinfinite system Ax = b by solutions of finite sections of this system is

characterized in terms of linear independence, uniform as I-
- 

(*) , of A over

I
+
V

I-  
with I* an integer interval of lenoth dim A

2
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2. The index of a band matrix. The r-th diagonal or band of the biinfinite matrix A

is the seouence (A(i-r,i))i=_. . Here and below, A(i,j) denotes the (i,j)-th entry of A.

A biinfinite matrix A is banded (or, a band matrix) if all but finitely many of its bands

are zero. Such a band matrix A gives rise to a linear map on RZ , the linear space of

all real biinfinite seauences, and we will identify A with that map.

A biinfinite matrix A is called m-banded if all but m+1 consecutive bands are

zero. (I chose the term "m-handed" in preference to "(m+l)-banded" since such a matrix is

eouivalent to an m-th order difference operator, its kernel usually has dimension no biqger

than m ,etc.) Thus A is m-banded iff for some £

A(i-Z,j) 31 0 implies i r j 4 i+m

Unless otherwise indicated (e.q., by context), I will always assume that £ = 0 . This is

merely a normalization achievea by considerino F A instead of A , with F the shift,

(Ea)(i) := a(i+I), all i , all a in RZ

an invertible operator which preserves more or less all interesting structures in RZ

The handed matrix A is called strictly ,i-handcl if

(2.1) A(i,i)A(i,i+m) i 0, all i,

i.e., the first and last nontrivial band is never zero. This nontrivial assumption insures

that, for every i , every a in T
m  

gives rise to one and only one sequence f with

Af = 0 and f(i+j) = a j=1,...,m

To put it differently, with

IL= 'g f ERZ : f= 0

denoting the kernel or nullspace of A , strict m-bandedness of A insures that

(2.2) for every i, the map t---*R
m  

f! f(i] is one-one and onto.

Here and below, f[i] lenotes the m-vector (f(i+1). (i+m)) ° For a subset F of

RZ , we use, correspondingly,

Ffij := {f[il fEF)

Also, it will he convenient to denote by Ei the inverse of the i-th map in (2.2), i.e.,

(2.3) for all fel Ei(f[i)) = f

3



Ei  is the "fundamental solution" for the homogeneous system

Af =0

which produces the particular solution f = Eia corresponding to the qiven initial

values f[i) = a .

It is the purpose of this paper to characterize certain aspects of strictly -

matrices in terms of their kernel. It is therefore important to realize that suc" matri-e'

are essentially determined by their kernel.

Proposition 1. If I is an m-dimensional subspace of RZ which satisfies (2.2), t-en

there exists, up to left multiplication by an invertible diagonal matrix, exactly one

strictly m-banded matrix A for which I 
=

A "

We also introduce two subspaces of IL,

(f £'St: His f(i) <

with * standing for either + or - . (We continue this convenient use of *trou-nut

the paper.)

Definition. The strictly m-banded matrix A has index k , or, index(P) k, in
+

case and dim. = k

In particular, if A has index, then

dim in'-ex(A)
A

m- = dim 'it = m - index(A)
A

The notion of index is introduced here since A has index iff A is "invertible" i-

a certain weak sense. In the followina statement of this eouivalence, we iise the "i'ac-

sequence 1, defined by

-i(j) = 6i•

Proposition 2. The strictly m-handed matrix A has index iff for every i ,

4



exists exactly one ci C 2. with Aci = 6.-i

This proposition is given in [31, but we glive here its prool, sliobtlv altere, "or

completeness.

Proof. Since ~1 is the kernel of , there is at most one soluti-n (for any

particular i ) if and only if 'f-r+ = (n) - Hence it is sufficient to nrne eat, niver

uniqueness, we have n
+ 

+ m- = m iff there is a solution for every i

For this, note that ci  satisfies i = 6 iff-- i

- Fc.: ilc i-1J on ] im

(2.4) 
c . = +

c. Eic [i] on ]i,-1

and
i+m

(2.5) Z M(i,j) ci(j) = .j=i

In words, ci  is necessarily determined by the (m+1)-vector (ci(i)...,ci(i+i-)) :or

j<i+m, Zi(j) coincides with the extension of ciri-1) = (ec(i) c(i+m-1)) to an

element of I, while, for j>i, ci(j) coincides with the extension of cri i =

( i(i+)..... ci(i+m)) to an element of t. Conseauently, ci c Z iff

(2.6) c i *-- 1

Now assume m- + m= m m Note that (2.4) - (2.6) constitute a linear system

(2.7) Pi(ci1[i i+m = °1

in the m+1 unknowns ci(i),...,ci(i+m) , with the first m-m homooeneoui eouatios

ensurinq that Ei-,.ii-11 lies in - , i.e., c fi-i c fi-i1 , the nt euatio', t--1

only inhomogeneous one, being just (2.r), and the last m-m
+  

homoaeneous enuations

ensuring that Ei ci[il lies in *, i.e., ci[i] r 1 [i] . Since m- + = mI Iy

assumption, this means that (2,7) has as many equations as unknowns and, sincp we irpalv

AL.



know that it has at most one solution, the existence of a solution follows.

Conversely, assuming the existence of a solution for every i , consider the maps

R -+ : a j- Z a c.- j=0 -+

with * standinq for + or - (as before), and m m + m Then

m-+1 ,if * +

null = m+1 -rank > m+1 - m +

m +1 , if * = -

+

Conseouently, there exists a e kero t% ker- \ {0} . For this a

m

d Z aj ci+j  9(
j=0

since (c) is obviously linearly independent. On the other hand, since

ij(s) ,for s < i+m

j+ - , j= .m
c (s) , for s > i+m

we find

zm a]_i+- on 1--,i+m[
0

d=
+

S ac on ]i4+m,w[
0 j-i+j

and therefore, by choice of a , d(s) = 0 for s < i+m and s > i+m . This implies

m ) m , and therefore, since by assumption it (n1- = {0}, i.e., m++m m , the

conoluisinn m+ + m- = m follows . III

Example 1. Let A be the tridialonal matrix whose rows are alternately 1,0,2 and

2,0,1 . Then the two seauences
i i+1 

i
+2

f ,0 2 , 2 , .2

+ 2-  i-i
,  -i-2

,

f ~~~ .. , 2 ,0,2 ,



are both in = 'A and linearly independent and, obviously, = span{f ) Hence A

has index 1 . The construction of ci as in the proof boils down to wantinq

a f on ]--,i+1]
c. =
-i +4-

a f on [i+1,-[

and

(2.P) A(i,i)ci(i) + A(i,i+l)ci(i+1) + A(i,i+2)ci(i+2) = I.

This forces a- and a+ to satisfy

(a f - o-f )(i+l) 0

A(i,i+2)(+f
+ 

- a f )(i+2) 1

the latter from (2.R) usina the fact that f- E '. In particular, since f + and f-

vanish alternately (though never together), this shows that c
+ 

= 0 iff c. 0

The proof of Proposition 2 yields the following additional facts.

(i) The nontrivial seoupncp I = Laj.i
4 j in the second part of the proof has its

support in the interval [i+m, i+ml, i.e., at the single point i+m . Since (aj) is

linearly inler'(nent, it follows that, up to scalar multiple, (aj) is the unigue (finite)

seauence for wlich Ea has its support at the sinale point i+m . In particular,

there exists exactly one a. 6 R
m 1  

for whichm

E i
j 

Si+j a (") rj= !

This says that the handed matrix A' qiven by

A'(i,j) = a,-,(i-j+m)

satisfies

Sc k(i)A'(k,j) = Z a. (k-j+m)ck(i) =a (k)c (i) 6.(i)
k k --- m k k-j-m -k+j-m --

In other words, the matrix A(-) whose k-th column consists of the X.-sequence ck

constructed in the proposition, all k, satisfies

AA( "  
-1 ) A
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and this implies at once that A' = (AA(-)A
'  

A(A(-A') = A (There is

difficulty here with the change in the order of summation, since all surn-s are .

finite.) This proves

Corollary 1. If A has index, then A is invertible in the sense t~at t-e ' .

a matrix A
(- )  

(necessarily unique) whose columns are hounae' an1 for wnicl-

AA - 1 ( 
)  

.

In particular, AT(A(-))T = 1 , but there is no auarantee that the columns of 
T

are bounded. For, with D any irvertihle diagonal matrix, PP still has (the same) in4,:,

but now

(DW)
( ) 

= A(-)D
~I

some of whose rows may he made unbounded by proper choice of D . For examnle, in Fxanre

1, A = AT and AT(-) = A
(- )T  

as one easily verifies, hence both A an,4 A7 have inlex

I . But, with D - diag[..., 2 i/2, ... ] , (DA)T has no index since 'AT DA)T contains

ounded sequence D- , while, e.g., with D = diag[..., 2
i
, ... 1, (DA)T again has

ir-lex, but now index 2 . In rarticular, now

(DP) 
(
-
)T  4 (DA) 

T (
-
)

even though both matrices satisfy the equations

(DA)Tx = 1 = X(DA)T

(for X). The uniqueness assertion for A
(- ) 

only covers £ -columnel matrices .-

A(-) does function as the inverse for A , at least' as the inverse f )r 7 rn~'ic

to sequences of finite support.

(ii) A repeat of the second part of the proof of Proposition 2, but with

rather than eaual to m+ + m- , shows that (in case A has index) any secei'-ce r i -

with a c kerO +keroC must vanish identically, hence ker +f ker - Sinre npn

rak* * * * m*

rank = m - nullo > m - m , this implies rank m ani1 so nroves

Oorollary 2. If A has index, then, for every i, the mar

P



*mR7-+ L a - Z a c:
j=1 3'-+ j

carries KP onto

This corollary shows that any m consecutive columns of A
( - ) 

supply all the

information needed to construct a basis for + and I- . Example 1 above shows that it

is usually not sufficient for this purpose to consider fewer than m consecutive columns.

We conclude from (2.4) and Corollary 2 that, for any i and any r ) 0 , the columns

of

A . ... ,.i+m) and A r(-)(i+l. i+m
A i-r-m+1,..., i-r ai+r+1,. .,i+r+m)

span '9+[i] and -[il , respectively, hence have rank m
+  

and m- , respectively. This

implies

Corollary 3. If both A and AT have index and A(
-
)T = AT( - ) , then

index(A) + index(AT) = m

(iii) Finally, we use Corollary 2 to point out a particularly useful choice for the

matrix 1i  in (2.7). we know that

c. (s) for s < i+j+mci~js) = +j

ii+ j (a) for s > i+j

Hence, from corollary 2, the sequence Ci.m[i-1], ... , c_[i-1] must contain a basis

for W+[i-1] , say ii-11, .. cim+[i-1] . Since %L[i-1] = 1+(i-11 * V-[i-11 , we

+ • +
can therefore find Al •., A+ with support in [i,i+m-11 so that

m

+c i  = 6 , rs1.. m
r-i rs

while in addition

. . . . . . . . . . . . .. . .. . .. . . . .. . . . .. .. . .. .. .. . .. t l t m l t . .. .. ... .. . . . .. .. .. . . . .. .. . .. m l l . .. . . .. .I I



rO

This guarantees that

+ c = 0 for all r and all s)i

r -S

since, for s > i c[i-Il = Es[i-1]

Finally, the linear functional
i+m

a f- Z a .f(j)
iJ-

has support in (ii+m] and carries cj to zero for any j ' i (since then c i i

while mc i = I . It follows that the two seouences

... ,c and X . . X t' X .

1m + 1 m m
are biorthonormal. This gives

Corollary 4. If A has index, then the matrix Bi  in (2.7) can be chosen so that

laB- is a submatrix of P(-) specifically, so that
1

B , A .' J-1 (- ., 1 . . .. .

1 + 1
m m

for some i-m 4 i< ... < i + < i < < j  (i+m.
m M

Fxample 1 shows that we cannot count on choosing Pi  from consecutive columns of

iie

Corollary 4 shows that, if A is boundedly invertible on £p , i.e., if A is a

bounded map on £p , then Bi  can be chosen bounded below uniformly in i . This will be

important when it comes to characterizing bounded invertibility of an r-handed matrix.

A a further illustration, let now A be a banded Toeplitz matrix. Then A is

strictly m-banded for some m , and, without loss of generality,

A(i,j) = aj i , all i,j

for some ;eauence (ar ) with a = 0 for r < 0 and r > m , and a ~am . L z0,

Zm be the m zeros, counting multiplicity, of the characteristic polynomial pA

Pa for A , given by

10



ul S

m

pa(z) Z a z.
a- j=O

If these zeros are all simple, then %1A is spanned by the m sequences

Zi = (zi j _ , = , . , .

In case of coincidences, sequences of the form

j z ). , r=-( ..... mi-1 1=-

appear, with m i the multiplicity of zi as a zero of Pa "bnsequently, A has index

iff Izi 9 I , all i , i.e., iff pa(z) does not vanish on IzI = I , and in that case

index(A) = { z : 1z I < I . This shows that our notion of index is an extension of1 1

the index of a Tbeplitz matrix as used, e.g., in rokhberg and Feldmann [7] . Further, if

our Toeplitz matrix A has index, then the elements of 'a are not only bounded at *
A

but they actually no to zero there exponentially fast. Such exponential decay also occurs

for general m-banded matrices, but only if the assumption that A have index can he

strengthened to A having a bounded inverse (as a map on . , say).

3. Exponential decay. Exponential decay has been recognized as a characteristic

feature of the bounded inverse of a linear differential operator for some time. Massera and

Sch~ffer []P credit Perron [9] with having first observed this (for nonautonomous systems).

Further, they have introduced the term "(exponential) dichotomy" to describe the

concomitant property of the kernel, i.e., of the linear space of solutions to the

homogeneous problem, to break up into two subspaces with one consistino of those solutions

which are bounded (decay exponentially) at - , and the other of those solutions which are

bounded (decay exponentially) at +- . In addition, their notion of "(exponential)

dichotomy" includes a certain uniformity with respect to the independent variable of this

direct su decomposition.

For the case of band matrices, this exponential decay is of course well recognized in

the special case of Toeplitz matrices, i.e. of constant coefficient difference equations.

Put if there is a worked-out theory for general band matrices to parallel the development

in, say, Cbppel [41 for ordinary linear differential operators, I have not been able to

find it. I have only seen discussions in which the bands are assumed to become constant

-- i iiii1i



asymptotically.

All results concerning the exponential decay of inverses of hand matri-5 nan .

on the following theorem due to Demko [5], or its obvious qeneralization' .

Trheorem I. (Demkol if A is a finite invertible band matrix, th-en there ex1i I
const and A~ C 10,1[ which may depend on 11Al , 11A- 1 1 and the hand width of 7- 1i

on the order of A so that

(3.1) 1A_
1
(i,j)j 4 const AX-i , all i'j

A simple proof which makes the constants const and X explicit an,' rakes ohvin,.is

how this result would apply in a multivariate situation (i.e., when i, j ranue over a

multidimensional grid) can be found in E23 (see the proof for Lemma 2 below). The ess, ta

feature of the argument (and the wherefore of the exponential decay) is alrea
9
v evident

from the argument for the following lemma and its corollary (also fron 12').

Lemma 1. If A is i-banded (with I = 0), and bounded and boundedlv invertihle as a

map on 9 for some p < ,then, for any f eT and any i < i
p T

(3.2) 11 V- C 11 1

lI~~±jlI ~ p ~~I~-rnj+m]
K +

with

K = I~lh

Pro.Let f, - fi,j] f = 11i-mji'mi Then snpp Af' C [i-m1,j' an-!

supp Af' supp A(f-f') C Z1, Ci-m,j] ,hence

supp A'Asupp Af'

Therefore

12



11 Af" -AVII 11P 1Af 11 11I f 1

on I for some p < ,then, for any f~ E T and any i
p A

(3.3) ilffi+jmJII p const A IiIlft il l1iP
p - p

either for j = 1,2,3.... or else for j =-1,-2,-3,. with

(3.4) A := (ic + 1)/(icp - 1) , const -1(A-1)/A

p2

Proof. Let av Ilffi+vmlII . Then, from (3.2),
V p

A Z a E a
-j<v<j V -j~v, j

hence

(3.5) A3 a ~ a.
-j~v~j

Suppose now that (3.3) is violated for some j r and j = s with r < 0 < s, andi

assume without loss that r 4 -s and that j =r is the lamoest inteaer 4 -s 'or wc

(3.3) is violated. Thpn, from (3.2) and the choice of r and s,

r a V 4 (A-11) 1(ar + a s) < (A-i)- const (Ar + A s) a0
(3.6) 1~~ -- i s-11

-(A + A )a
2 0

Oni the other hand, by the choice of r and (3.5),

a = 2 a + E a > const A r, ( 1ao + Asa a
rvq r<v4-s -s<V<s

= 5(Ar- - A )a. + As' a

1 -i- -
=-(A + A a
2

which contradicts (3.6). I

13



Corollary 2, If A is rn-banded, and bounded and boundedly invertible on some I9.

with p < ,then

there exist const > 0, A > 1 so that, for all i , all f c Q
(3.7)

The proof of Lemma 1 is based on the following observations: Mi the support of A

is only slightly larger than that of .1 , i.e.,

supp(A) C supp *j + E-m,Ol

and (ii) if f E R , then supp(Aj) =supp A(fL-.) . The second step cannot be used any

more when f it, but the same idea still works when Af has small support, e.g., when

-k

In this case, setting llVij , I\imjm'~ we find

silpp z N I %i-m J]

supp AlT supp A(f-f") U supp IfT [i-m,jJ %J (k)

so that, for k e ti-m,j] , supp )AL' A~ supp ;l7 = j6 , and therefore, concluding as in

the proof of Lemma 1, we obtain

Lemma 2. If A is rn-banded, and bounded and boundedly invertible as a linear map on

9. for some p < ,then, for all i 4 j and all k E [i-m,j], Al f and f e X.
p - k - p

implies

(3.8) flZ \iM,j..]J , K I fj [i] O , with c := 1A1IA1 I

Corollary. If A is rn-banded, bounded and boundedly invertible as a linear map on

9.p for some 1 4 p e then (Al9.  Bit= with

p p

for some const and some A. £ 10,1[ which depend only on WAI I I and m

14



Proof. Since MB(*,k)l ( MA-IU , the conclusion is immediate in case p ( . If-- p

p , then the lemma, applied to AT , gives the conclusion for BT rather than B

But that is clearly enough. III

As Demko has already stressed, such a corollary shows that A is boundedly invertible

on every Z. if it is boundedly invertible on some L. . This raises the question of thep p

best choice of X in (3.9), which, from the argument, could be chosen as

DAR
p 

- A-
1 u-P

(3.10) m P = 1 - 2/(UA IA-Mp)
p

AM
P  

+ RA- l - p  P p
p p

for any particular p . Since MCIp = ICTp I with i/p + i/p' = 1 , while (3.9) is

equivalent to the same statement for BT , we can always choose X as

(3.11) Xm = 1 - 2/ min (NAN iA-
1
1 )min{p,P/(P-1) ,p p"

but it is not clear to me for what p this minimum might be taken on.

We are now ready to prove the main result of this section.

Proposition 3. Let A be a bounded strictly m-banded matrix. Then A is boundedly

invertible on X. iff (i) A has index; (ii) for each i , the matrix Bi in (2.7) canp

be so chosen that supi 1BI < 
= 

; and (iii) the elements of decay exponentially

uniformly, i.e., (3.7) holds.

Proof. The sufficiency of these conditions is immediate: (i) allows the construction

of A
(
-
) 

, (ii) implies that, for each i

IA(-)(i+j,i)l < const , J=O,...,m,

with const independent of i , and (iii) then implies that

15



NA (-)(,i)[i+mj]U 4 const XiJ , all j

for some const and some X e [0,1( independent of i or j . This shows A
(- ) 

to have

uniform exponential decay away from the "main" diagonal, hence A
(- ) 

maps Z into itselfp

for any particular p £ [1,-] . Since we already know that AA
(- ) 

= A(-)A , this

shows that

A (Alt Ji, p4.ip p '

The necessity is a bit harder to prove, but earlier results contain all of the work.

If (Al )-1 exists, then, from the corollary to Lemma 2, A is boundedly invertible on

L. , hence A has index, and, since then (AI±) = A .  , condition (ii) follows

from Corollary 4 to Proposition 2, while (iii) follows directly from Corollary 2 to

Lemma 1 . I

Remark. This necessary and sufficient condition for the bounded invertibility of a

strictly m-banded matrix is not quite the "exponential dichotomy" introduced by Massera an'!

SchAffer to characterize the bounded invertibility of an ordinary linear differential

operator. As Coppel [4;Chap.2] describes it, such "exponential dichotomy" requires, in

addition to (3.7), that

(3.12) for some const and all i , all f £ V, (Qf)[i] 4 const 11f[i]H

with Q the linear projector on R associated with the decomposition = A V

i.e.,

ranQ - , kerQ -

In Proposition 3, this condition is replaced by condition (ii) which also prevents the

angle between PJ+[i] and U-[i] from going to zero, but in a different way. I do not 'now

whether (3.12) is necessary for the bounded invertibility of A , but I doubt it.

The argument does show that (i) and (iii) alone imply already the bounded

invertibility of DA for some suitably chosen invertible diagonal matrix D

4. The main diagonal. In an attempt to understand how the inverse of a biinfinite

band matrix might be approximated by inverses of finite sections of A , one is naturally

i6



led to the question of what might he the main diaqonal of A . For a precisp definition, we

need some notation.

Let I, J be inteper intervals. Then

A= (AiJ)iIjEj

denotes the corresponding section of the biinfinite matrix A . We can thinl of A,

simply as a IlIxIJI-matrix. But, A I, also describes the nontrivial part of the linear

map PIAPj with

a(i) , i C I

(Pia)(i) :- -
0 , i I

more precisely, AI, is the matrix representation (with respect to the canonical basis)

of the linear map

PI(Iran p.)j

and we will not distinguish between these two.

Suppose that A is m-banded, bounded anA boundedly invertible. Then we know that the

linear system

(4.1) Px = b

has exactly one solution in Z. in case b £ £ we may then try to anoroximate thep - p

solution x by truncation, i.e., by the solution xx , if any, of the finite (souare)

linear system

(4.1)' AI 1  = bt ' I =

with

A7  AI J  J I + r : {i+r i E I)

and r I some integer.

Call this projection scheme suitable if (4.1)' has exactly one solution for all

large I and Ox - xl p -4 0.

Take specifically p < , so that P, converaes pointwise to the identity on k

as I - Z . Then (see, e.q., Gokhberg and Feldmann [7; Theorem 11.2.11) the proiectio-

scheme is suitable iff

17



(4.2) - -1I =

i.e., A1- exists for all sufficiently large I and can be bounded independently of I

Note that Demko's result makes it unnecessary here to specify in which p-norm we measure

IA -1II , since A is m-banded. The m-bandedness of A also restricts the possible

choices for r, , since A, is trivially noninvertible unless 0 4 r 4 m . Actually, as

we now show, for our projection scheme to be suitable we usually must have

r, = m
+  

for all large I .

Lemma 3. Let A be m-banded, bounded and boundedly invertible. If (4.2) holds, then

there exists const > 0 so that, for all large I -: [t,t ]

for all f e , Ifl_ * const f(t*II

with I := I NJ and I := (I+m)\ J

Proof. Let f e 3 . Then, for i c I

(AIPf)(i) = (Aifl(i) = E A(i,j)f(j) = -Z A(i,j)f(j) = - Z A(i,j)f(j)
j£J je\J +I-

Consequently 
iCI UI

"hPjfI 4 (IA If I+UI-'

or

If--IJ . 4 4A II'-A m
ax{ OfI 

' 
+ I., Ifl--,-1.}

in case AI is invertible.

If now, in addition, f £ A I then Corollary 2 to Lemma 1 supplies const > 0 and

A > 1 independent of f so that

If[t+]1N > const A9 / m Df~t++j]l. J =1,2,3 ....

and therefore

If~t+11. 4AIfI. + If t1 I
4 (i + 9A I-IHA ] max{ if i+ , const A _t+' •

If now urn IA N
, 

< , then, for all sufficiently large III
' -i-  A-1,

k1 + 1A A) const A < 1 and 1 + IA 'lAN 4 const'

I is



and then (4.3) follows for * = + with const = const'

The proof for * = - is analogous. I I

If A is strictly m-banded (hence f £ and f~i] =n implies f =0), then a

particular conseuence of (4.3) is that

(4.4) 'A is lin.independent over I

This implies that

r ,if * =
is = dim '6. C Ii I =

m-r
1 , if * = -

and m
+  = rI then follows.

These considerations motivate the following definition (see [3]).

Definition. The bounded and houndedly invertible hiinfinite matrix A (as a map on

k_ , say) has its r-th band as main diagonal provided lim I(Ai,i+r) <

ns noted already, in that case A
-1 

is the strona limit (in any k with p <

of (AI,I+r PI . Also, r = m
+  

(at least in case A is strictly m-banded).

Proposition 4. Let A he a strictly m-handed, bounded and boundedly invertible

matrix. Then A has its r-th hand as main diagonal iff (4.3) holds.

Proof. Lemma 3 establishes the necessity of this condition. As to the sufficiency,

let q be a matrix with support in (I+r)xI . Then i+r,I = Aii+r if and only if

P = 
A
- N on [I U(I+m)] xI

with ?'(.,k) E 'LA all V. C I . In other words, AI,I+ r  is invertible iff we can find,

for each k in I ,an -k in TLA which agrees with -k , the k-th column of

A
-  

, on I
+ 

:= I\(I+r) and on I- := (I+m)\ (I+r) , and, in that case, (Ck -_n)J

provides the k-th column of the inverse.

We already noted that (4.3) implies (4.4) and, in particular, that r = m
+



Consequently, we can find (Q.) .£+ in so that q (i) = , all i, E

then implies that

llqj[t Ill ( const
I

and therefore, by Corollary 2 to Lemma 1,

llqj[t ]II 4 const X a al j E I+

for some fixed X c 10,1[ . kialoqously, there are qj C 1L), so that (i)=

i,j e I and these satisfy

Iag(t+]II const XA
I  

, all j C I-
-j

This reduces the task of determininq nk = r(.,k) to solvino the linear svFte-

-i) + E - nkj 'j(i) , IVI
jII U

and this system has a coefficient matrix which differs from the ilentitv 'atrix by nn !or-

than const X , hence is invertible for all sufficiently laroe III . 'ritp

nk  =ZI* nkj -qj .Then we have further by Corollary 2 to lenma 1 that
kj-j

NnkIt*+(*D~ml 4 const 0 11 + X ici ,
_ *, j=1,2......

k~ Wl

It follows that

IA-1(i,k) - Al-1(ik)l < const I1A -111 Xi

i.e., A 1  converges exponentially fast to A-1 in its interior. In an " event,

7im -I IIi const 1 II - II Il I I,I+r
I+Z

Remark. I now question whether the seeminalv waker condition usp:1 ir '31 to eino

main diagonal, viz. that (A I,I+r)-l exist for all larae I and that

A-1(i,j) = lira (A i,i+r)-1( i,i), all i'!

I+Z

is, in fact, ecruivalent to (4.3). Further, the linear independence of 1. over 1UJ
-

implies the existence of (A Ii+r-1 but I do not know whether the converse ' .

20



Remark. The matrix of Excample 1, though bounded and boundedly invertible, does not

have a main diagonal since the element(s) of IAvanish at every other point, so (4.3)

cannot hold for all large I - But (4.3) does hold for a subsequence, hence its center ha.-

is main in this weaker sense. By contrast, any bounded and houndedly invertible Thenli'-z

matrix does have a main aiiagonal (as is well known, see, e.g., rokhherg and Fe1'Iman '7

since the elements of 'tare (possibly extended) exponential sums _nvolvino m*

"freouencies", hence 'fl is linearly independent over any m *consecutive points, and
A

uiniformly so
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